Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 210, Numéro 2, 2016
Page(s) 89 - 99
Section Molécules biologiques xénoactives
DOI https://doi.org/10.1051/jbio/2016016
Publié en ligne 30 septembre 2016
  • Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptides : SignalP 3.0. J Mol Biol, 340, 783–95. [Google Scholar]
  • Calvette, J.J. (2013). Snake venomics : from the inventory of toxins to biology. Toxicon, 75, 44-62. [CrossRef] [PubMed] [Google Scholar]
  • Cavette, J.J. (2014). Next-generation snake venomics : protein-locus resolution through venom proteome decomplexation. Exp Rev Proteomics, 11, 315-329. [CrossRef] [Google Scholar]
  • Chippaux, J.P., and Goyffon, M. (2006). Venomous and poisonous animals. Med Trop, 66, 215-220. [Google Scholar]
  • Ducancel, F. (2014a). Venins, toxines et applications médicales. Biofutur, 355, 24-25. [Google Scholar]
  • Ducancel, F. (2014b). « Venimeux ou vénéneux? ». Biofutur, 355, 25. [Google Scholar]
  • Ducancel, F., Durban J., and Verdenaud, M. (2014c). Transcriptomics and venomics : implications for medicinal chemistry. Future Med Chem, 6, 1629-1643. [CrossRef] [PubMed] [Google Scholar]
  • Ducancel, F., and Blanchet G. (2015). La fonction Venimeuse : « Venins et toxines de serpents », Chap. 19, Lavoisier, France [Google Scholar]
  • Dutertre, S., Jin A-H., Vetter I., Hamilton B., Sunagar K., Lavergne V., Dutertre V., Fry B.G., Antunes A., Venter D.J., Alewood PF, and Lewis, RJ. (2014). Evolution of separate predation- and defense-evoked venoms in carnivorous cone snails. Nature Commun, 24, 3521-3529. [CrossRef] [Google Scholar]
  • Fry, B.G., Scheib H., van der Weerd L., Young B., McNaughtan J., Ramjan S.F.R., Vidal N., Poelmann R.E., and Norman, J.A. (2008). Evolution of an arsenal. Mol Cell Proteomics, 7, 215-246. [CrossRef] [PubMed] [Google Scholar]
  • Fry, B.G., Roelants K., Champagne D.E., Scheib H., Tyndall J.D., King G.F., Nevalainen T.J., Norman J.A., Lewis R.J., Norton R.S., Renjifo C., and de la Vega, R.C. (2009). The toxicogenomic multiverse : convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet, 10, 483-511 [CrossRef] [PubMed] [Google Scholar]
  • Gasparini, S., Gilquin B., and Ménez, A. (2004). Comparison of sea anemone and scorpion toxins binding to Kv1 channels : an example of convergent evolution. Toxicon, 43, 901-908. [CrossRef] [PubMed] [Google Scholar]
  • Gutiérrez, J.M., Lomonte, B. (2013). Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon, 62, 27-39. [CrossRef] [PubMed] [Google Scholar]
  • Jungo, F., and Bairoch, A., (2005). Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase. Toxicon, 45, 293–301. [CrossRef] [PubMed] [Google Scholar]
  • Lavergne, V., Harliwong I., Jones A., Miller D., Taft RJ., and Alewood, PF. (2015). Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc Natl Acad Sci USA, 112, E3782-791. [Google Scholar]
  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–60. [Google Scholar]
  • Li, W., and Godzik, A. (2006). Cd-hit : a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. [CrossRef] [PubMed] [Google Scholar]
  • Margres, M.J., McGivern J.J., Wray K.P., Seavy M., Calvin K., and Rokyta, D.R. (2014). Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). J Proteomics, 96, 145-158. [CrossRef] [PubMed] [Google Scholar]
  • Ohno, M., Ménez R., Ogawa T., Danse J.M., Shimohigashi Y., Fromen C., Ducancel F., Zinn-Justin S., Le Du M.H., Boulain J.C., Tamiya T., and Ménez, A. (1998). Molecular evolution of snake toxins : is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol, 59, 307-364. [CrossRef] [PubMed] [Google Scholar]
  • Rodrigues, R.S., Boldrini-França J., Fonseca F.P.P., de la Torre P., Henrique-Silva F., Sanz L., Calvete J.J., and Rodrigues, V.M. (2012). Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J Proteomics, 75, 2707-2730. [CrossRef] [PubMed] [Google Scholar]
  • Schuster, SC. (2008). Next-generation sequencing transforms today’s biology. Nat Methods, 5, 16-18. [CrossRef] [PubMed] [Google Scholar]
  • Sunagar, K., Jackson TNW., Undheim EAB., Ali SA., Antunes A., and Fry, BG. (2013). Three-fingered RAVERS : Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins. Toxins, 5, 2172-2208. [CrossRef] [PubMed] [Google Scholar]
  • Tamiya, T., and Fujimi, T.J. (2006). Molecular evolution of toxin genes in Elapidae snakes. Molecular Diversity, 10, 29-43. [CrossRef] [PubMed] [Google Scholar]
  • Terrat, Y., Biass D., Dutertre S., Favreau P., Remm M., Stöcklin R., Piquemal D., and Ducancel, F. (2012). High-resolution picture of a venom gland transcriptome : case study with the marine snail Conus consors. Toxicon, 59, 34-46. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, S., Gao B., and Zhu, S. (2015). Target-driven evolution of scorpion toxins. Sci. Rep., 7, 14973. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.