Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 3, 2016
Page(s) 127 - 138
Section Les nucléotides cycliques : signalisation et rôles physiopathologiques Séance du 18 mai 2016
Publié en ligne 4 novembre 2016
  • Abi-Gerges, A., Richter, W., Lefebvre, F., Mateo, P., Varin, A., Heymes, C., Samuel, J.L., Lugnier, C., Conti, M., Fischmeister, R., and Vandecasteele, G. (2009). Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res, 105, 784-792. [CrossRef] [PubMed] [Google Scholar]
  • Ahmad, F., Shen, W., Vandeput, F., Szabo-Fresnais, N., Krall, J., Degerman, E., Goetz, F., Klussmann, E., Movsesian, M., and Manganiello, V. (2015). Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium : phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem, 290, 6763-6776. [CrossRef] [PubMed] [Google Scholar]
  • Amsallem, E., Kasparian, C., Haddour, G., Boissel, J.P., and Nony, P. (2005). Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst Rev, CD002230. [Google Scholar]
  • Baillie, G.S., Sood, A., McPhee, I., Gall, I., Perry, S.J., Lefkowitz, R. J., and Houslay, M.D. (2003). Beta-arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA, 100, 940-945. [CrossRef] [MathSciNet] [Google Scholar]
  • Beca, S., Ahmad, F., Shen, W., Liu, J., Makary, S., Polidovitch, N., Sun, J., Hockman, S., Chung, Y.W., Murphy, E., Manganiello, V.C., and Backx, P. H. (2013). PDE3A Regulates Basal Myocardial Contractility Through Interacting with SERCA2a-Signaling Complexes in Mouse Heart. Circ Res, 112, 289-297. [CrossRef] [PubMed] [Google Scholar]
  • Beca, S., Helli, P.B., Simpson, J.A., Zhao, D., Farman, G.P., Jones, P. P., Tian, X., Wilson, L.S., Ahmad, F., Chen, S.R., Movsesian, M.A., Manganiello, V., Maurice, D.H., Conti, M., and Backx, P.H. (2011). Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res, 109, 1024-1030. [CrossRef] [PubMed] [Google Scholar]
  • Berthouze-Duquesnes, M., Lucas, A., Saulière, A., Sin, Y.Y., Laurent, A.C., Gales, C., Baillie, G., and Lezoualc’h, F. (2013). Specific interactions between Epac1, beta-arrestin2 and PDE4D5 regulate beta-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal, 25, 970-980. [CrossRef] [PubMed] [Google Scholar]
  • Bethke, T., Eschenhagen, T., Klimkiewicz, A., Kohl, C., von der Leyen, H., Mehl, H., Mende, U., Meyer, W., Neumann, J., and Rosswag, S. (1992). Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittelforschung, 1992, 42, 437-45. [Google Scholar]
  • Bobin, P., Varin, A., Lefebvre, F., Fischmeister, R., Vandecasteele, G., and Leroy, J. (2016). Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc Res, 110, 151-161. [CrossRef] [PubMed] [Google Scholar]
  • Burgin, A.B., Magnusson, O.T., Singh, J., Witte, P., Staker, B.L., Bjornsson, J.M., Thorsteinsdottir, M., Hrafnsdottir, S., Hagen, T., Kiselyov, A.S., Stewart, L.J., and Gurney, M.E. (2010). Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol, 28, 63-70. [CrossRef] [PubMed] [Google Scholar]
  • Castro, L.R., Verde, I., Cooper, D.M., and Fischmeister, R. (2006). Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation, 113, 2221-2228. [CrossRef] [PubMed] [Google Scholar]
  • Chung, Y.W., Lagranha, C., Chen, Y., Sun, J., Tong, G., Hockman, S.C., Ahmad, F., Esfahani, S.G., Bae, D.H., Polidovitch, N., Wu, J., Rhee, D. K., Lee, B.S., Gucek, M., Daniels, M.P., Brantner, C.A., Backx, P.H., Murphy, E., and Manganiello, V.C. (2015). Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci USA, 112, E2253-2262. [CrossRef] [Google Scholar]
  • Conti, M. and Beavo, J. (2007). Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases : Essential Components in Cyclic Nucleotide Signaling. Annu Rev Biochem, 76, 481-511. [CrossRef] [PubMed] [Google Scholar]
  • Conti, M., Mika, D., and Richter, W. (2014). Perspectives on : Cyclic nucleotide microdomains and signaling specificity : Cyclic AMP compartments and signaling specificity : Role of cyclic nucleotide phosphodiesterases. J Gen Physiol, 143, 29-38. [CrossRef] [PubMed] [Google Scholar]
  • Das, A., Durrant, D., Salloum, F.N., Xi, L., and Kukreja, R.C. (2015). PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther, 147, 12-21. [CrossRef] [PubMed] [Google Scholar]
  • De Arcangelis, V., Liu, R., Soto, D., and Xiang, Y. (2009). Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes. J Biol Chem, 284, 33824-33832. [CrossRef] [PubMed] [Google Scholar]
  • Degen, C.V., Bishu, K., Zakeri, R., Ogut, O., Redfield, M.M., and Brozovich, F.V. (2015). The emperor’s new clothes : PDE5 and the heart. PLoS One, 10, e0118664. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ding, B., Abe, J., Wei, H., Huang, Q., Walsh, R.A., Molina, C.A., Zhao, A., Sadoshima, J., Blaxall, B.C., Berk, B.C., and Yan, C. (2005). Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis : implication in heart failure. Circulation, 111, 2469-2476. [CrossRef] [PubMed] [Google Scholar]
  • Dodge-Kafka, K.L., Soughayer, J., Pare, G.C., Carlisle Michel, J.J., Langeberg, L.K., Kapiloff, M.S., and Scott, J.D. (2005). The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature, 437, 574-578. [CrossRef] [PubMed] [Google Scholar]
  • Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., and Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol A Mol Integr Physiol, 142, 136-143. [CrossRef] [PubMed] [Google Scholar]
  • Fox, D., 3rd, Burgin, A.B., and Gurney, M.E., (2014). Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal, 26, 657-663. [CrossRef] [PubMed] [Google Scholar]
  • Francis, S.H., Blount, M.A., and Corbin, J.D. (2011). Mammalian cyclic nucleotide phosphodiesterases : molecular mechanisms and physiological functions. Physiol Rev, 91, 651-690. [PubMed] [Google Scholar]
  • Fukasawa, M., Nishida, H., Sato, T., Miyazaki, M., and Nakaya, H. (2008). 6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (cilostazol), a phosphodiesterase type 3 inhibitor, reduces infarct size via activation of mitochondrial Ca2+-activated K+ channels in rabbit hearts. J Pharmacol Exp Ther, 326, 100-104. [CrossRef] [PubMed] [Google Scholar]
  • Ghigo, A., Perino, A., Mehel, H., Zahradnikova, A.J., Morello, F., Leroy, J., Nikolaev, V.O., Damilano, F., Cimino, J., De Luca, E., Richter, W., Westenbroek, R., Catterall, W.A., Zhang, J., Yan, C., Conti, M., Gomez, A. M., Vandecasteele, G., Hirsch, E., and Fischmeister, R. (2012). PI3Kgamma Protects against Catecholamine-Induced Ventricular Arrhythmia through PKA-mediated Regulation of Distinct Phosphodiesterases. Circulation, 126, 2073-2083. [CrossRef] [PubMed] [Google Scholar]
  • Giannetta, E., Isidori, A.M., Galea, N., Carbone, I., Mandosi, E., Vizza, C.D., Naro, F., Morano, S., Fedele, F., and Lenzi, A. (2012). Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy : a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation, 125, 2323-2333. [CrossRef] [PubMed] [Google Scholar]
  • Gotz, K.R., Sprenger, J.U., Perera, R.K., Steinbrecher, J.H., Lehnart, S.E., Kuhn, M., Gorelik, J., Balligand, J.L., and Nikolaev, V.O. (2014). Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes. Circ Res, 114, 1235-45. [CrossRef] [PubMed] [Google Scholar]
  • Guazzi, M., Vicenzi, M., Arena, R., and Guazzi, M.D. (2011a). PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure : results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail, 4, 8-17. [CrossRef] [PubMed] [Google Scholar]
  • Guazzi, M., Vicenzi, M., Arena, R., and Guazzi, M.D. (2011b). Pulmonary hypertension in heart failure with preserved ejection fraction : a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation, 124, 164-174. [CrossRef] [PubMed] [Google Scholar]
  • Hubert, F., Belacel-Ouari, M., Manoury, B., Zhai, K., Domergue-Dupont, V., Mateo, P., Joubert, F., Fischmeister, R., and Leblais, V. (2014). Alteration of vascular reactivity in heart failure : role of phosphodiesterases 3 and 4. Br J Pharmacol, 171, 5361-5375. [CrossRef] [PubMed] [Google Scholar]
  • Keravis, T. and Lugnier, C. (2012). Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network : benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol, 165, 1288-1305. [CrossRef] [PubMed] [Google Scholar]
  • Krishnamurthy, S., Moorthy, B.S., Xin Xiang, L., Xin Shan, L., Bharatham, K., Tulsian, N.K., Mihalek, I., and Anand, G.S. (2014). Active Site Coupling in PDE:PKA Complexes Promotes Resetting of Mammalian cAMP Signaling. Biophys J, 107, 1426-1440. [CrossRef] [PubMed] [Google Scholar]
  • Krishnamurthy, S., Tulsian, N.K., Chandramohan, A., and Anand, G.S. (2015). Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling. Biophys J, 109, 1251-1263. [CrossRef] [PubMed] [Google Scholar]
  • Kritzer, M.D., Li, J., Passariello, C.L., Gayanilo, M., Thakur, H., Dayan, J., Dodge-Kafka, K., and Kapiloff, M.S. (2014). The scaffold protein muscle A-kinase anchoring protein beta orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure. Circ Heart Fail, 7, 663-672. [CrossRef] [PubMed] [Google Scholar]
  • Layland, J., Solaro, R.J., and Shah, A.M. (2005). Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res, 66, 12-21. [CrossRef] [PubMed] [Google Scholar]
  • Lee, D.I., Zhu, G., Sasaki, T., Cho, G.S., Hamdani, N., Holewinski, R., Jo, S.H., Danner, T., Zhang, M., Rainer, P.P., Bedja, D., Kirk, J.A., Ranek, M.J., Dostmann, W.R., Kwon, C., Margulies, K.B., Van Eyk, J.E., Paulus, W.J., Takimoto, E., and Kass, D.A. (2015). Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature, 519, 472-476. [CrossRef] [PubMed] [Google Scholar]
  • Lehnart, S.E., Wehrens, X.H., Reiken, S., Warrier, S., Belevych, A.E., Harvey, R.D., Richter, W., Jin, S.L., Conti, M., and Marks, A.R. (2005). Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell, 123, 25-35. [CrossRef] [PubMed] [Google Scholar]
  • Leroy, J., Richter, W., Mika, D., Castro, L.R., Abi-Gerges, A., Xie, M., Scheitrum, C., Lefebvre, F., Schittl, J., Mateo, P., Westenbroek, R., Catterall, W.A., Charpentier, F., Conti, M., Fischmeister, R., and Vandecasteele, G. (2011). Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J Clin Invest, 121, 2651-2661. [CrossRef] [PubMed] [Google Scholar]
  • Lewis, G.D., Lachmann, J., Camuso, J., Lepore, J.J., Shin, J., Martinovic, M.E., Systrom, D.M., Bloch, K.D., and Semigran, M.J. (2007). Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation, 115, 59-66. [CrossRef] [PubMed] [Google Scholar]
  • Lezoualc’h, F., Fazal, L., Laudette, M., and Conte, C. (2016). Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ Res, 118, 881-897. [PubMed] [Google Scholar]
  • Lukowski, R., Krieg, T., Rybalkin, S.D., Beavo, J., and Hofmann, F. (2014). Turning on cGMP-dependent pathways to treat cardiac dysfunctions : boom, bust, and beyond. Trends Pharmacol Sci, 35, 404-413. [PubMed] [Google Scholar]
  • Martin, T.P., Hortigon-Vinagre, M.P., Findlay, J.E., Elliott, C., Currie, S., and Baillie, G.S. (2014). Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio, 4, 923-927. [PubMed] [Google Scholar]
  • Martins, T.J., Mumby, M.C., and Beavo, J.A. (1982). Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem, 257, 1973-1979. [PubMed] [Google Scholar]
  • Maurice, D.H., Ke, H., Ahmad, F., Wang, Y., Chung, J., and Manganiello, V. C. (2014). Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov, 13, 290-314. [PubMed] [Google Scholar]
  • Mehel, H., Emons, J., Vettel, C., Wittkopper, K., Seppelt, D., Dewenter, M., Lutz, S., Sossalla, S., Maier, L.S., Lechêne, P., Leroy, J., Lefebvre, F., Varin, A., Eschenhagen, T., Nattel, S., Dobrev, D., Zimmermann, W.H., Nikolaev, V.O., Vandecasteele, G., Fischmeister, R., and El-Armouche, A. (2013). Phosphodiesterase-2 Is Up-Regulated in Human Failing Hearts and Blunts beta-Adrenergic Responses in Cardiomyocytes. J Am Coll Cardiol, 62, 1596-1606. [CrossRef] [PubMed] [Google Scholar]
  • Mery, P.F., Lohmann, S.M., Walter, U., and Fischmeister, R. (1991). Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA, 88, 1197-1201. [CrossRef] [Google Scholar]
  • Metrich, M., Lucas, A., Gastineau, M., Samuel, J.L., Heymes, C., Morel, E., and Lezoualc’h F. (2008). Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res, 102, 959-965. [CrossRef] [PubMed] [Google Scholar]
  • Mika, D. and Conti, M. (2016). PDE4D phosphorylation : A coincidence detector integrating multiple signaling pathways. Cell Signal, 28, 719-724. [CrossRef] [PubMed] [Google Scholar]
  • Mika, D.P., Richter, W.P., Westenbroek, R,. E.P., Catterall, W.A.P., and Conti, M.M. (2014). PDE4B mediates local feedback regulation of beta1-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci, 127, 1033-42. [CrossRef] [PubMed] [Google Scholar]
  • Mika, D., Richter, W., and Conti, M. (2015). A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci USA, 112, 2023-2028. [CrossRef] [Google Scholar]
  • Miller, C.L., Oikawa, M., Cai, Y., Wojtovich, A.P., Nagel, D.J., Xu, X., Xu, H., Florio, V., Rybalkin, S.D., Beavo, J.A., Chen, Y.F., Li, J.D., Blaxall, B.C., Abe, J., and Yan, C. (2009). Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res, 105, 956-964. [CrossRef] [PubMed] [Google Scholar]
  • Mokni, W., Keravis, T., Etienne-Selloum, N., Walter, A., Kane, M.O., Schini-Kerth, V.B., and Lugnier, C. (2010). Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One, 5, e14227. [CrossRef] [PubMed] [Google Scholar]
  • Molenaar, P., Christ, T., Hussain, R.I., Engel, A., Berk, E., Gillette, K. T., Chen, L., Galindo-Tovar, A., Krobert, K.A., Ravens, U., Levy, F.O., and Kaumann, A.J. (2013). PDE3, but not PDE4, reduces beta(1)- and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br J Pharmacol, 169, 528-538. [CrossRef] [PubMed] [Google Scholar]
  • Molina, C.E., Leroy, J., Richter, W., Xie, M., Scheitrum, C., Lee, I.O., Maack, C., Rucker-Martin, C., Donzeau-Gouge, P., Verde, I., Llach, A., Hove-Madsen, L., Conti, M., Vandecasteele, G., and Fischmeister, R. (2012). Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol, 59, 2182-2190. [CrossRef] [PubMed] [Google Scholar]
  • Mongillo, M., Tocchetti, C.G., Terrin, A., Lissandron, V., Cheung, Y.F., Dostmann, W.R., Pozzan, T., Kass, D.A., Paolocci, N., Houslay, M.D., and Zaccolo, M. (2005). Compartmentalized Phosphodiesterase-2 Activity Blunts {beta}-Adrenergic Cardiac Inotropy via an NO/cGMP-Dependent Pathway. Circ Res, 98, 226-234. [CrossRef] [PubMed] [Google Scholar]
  • Movsesian, M. (2015). New pharmacologic interventions to increase cardiac contractility : challenges and opportunities. Curr Opin Cardiol, 30, 285-291. [CrossRef] [PubMed] [Google Scholar]
  • Movsesian, M., Wever-Pinzon, O., and Vandeput, F. (2011). PDE3 inhibition in dilated cardiomyopathy. Curr Opin Pharmacol, 11, 707-713. [CrossRef] [PubMed] [Google Scholar]
  • Oikawa, M., Wu, M., Lim, S., Knight, W.E., Miller, C.L., Cai, Y., Lu, Y., Blaxall, B.C., Takeishi, Y., Abe, J.I., and Yan, C. (2013). Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol, 64, 11-19. [CrossRef] [PubMed] [Google Scholar]
  • Osadchii, O.E. (2007). Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther, 21, 171-194. [CrossRef] [PubMed] [Google Scholar]
  • Pokreisz, P., Vandenwijngaert, S., Bito, V., Van den Bergh, A., Lenaerts, I., Busch, C., Marsboom, G., Gheysens, O., Vermeersch, P., Biesmans, L., Liu, X., Gillijns, H., Pellens, M., Van Lommel, A., Buys, E., Schoonjans, L., Vanhaecke, J., Verbeken, E., Sipido, K., Herijgers, P., Bloch, K.D., and Janssens, S.P. (2009). Ventricular Phosphodiesterase-5 Expression Is Increased in Patients With Advanced Heart Failure and Contributes to Adverse Ventricular Remodeling After Myocardial Infarction in Mice. Circulation, 119, 408-416. [CrossRef] [PubMed] [Google Scholar]
  • Redfield, M.M., Chen, H.H., Borlaug, B.A., Semigran, M.J., Lee, K.L., Lewis, G., LeWinter, M.M., Rouleau, J.L., Bull, D.A., Mann, D.L., Deswal, A., Stevenson, L.W., Givertz, M.M., Ofili, E.O., O’Connor, C.M., Felker, G.M., Goldsmith, S.R., Bart, B.A., McNulty, S.E., Ibarra, J.C., Lin, G., Oh, J.K., Patel, M.R., Kim, R.J., Tracy, R.P., Velazquez, E. J., Anstrom, K.J., Hernandez, A.F., Mascette, A.M., Braunwald, E., and Trial, R. (2013). Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction : a randomized clinical trial. JAMA, 309, 1268-1277. [CrossRef] [PubMed] [Google Scholar]
  • Richter, W., Day, P., Agrawal, R., Bruss, M.D., Granier, S., Wang, Y.L., Rasmussen, S.G., Horner, K., Wang, P., Lei, T., Patterson, A.J., Kobilka, B., and Conti, M. (2008). Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J, 27, 384-393. [CrossRef] [PubMed] [Google Scholar]
  • Richter, W., Mika, D., Blanchard, E., Day, P., and Conti, M. (2013). Beta1-adrenergic receptor antagonists signal via PDE4 translocation. EMBO Rep, 14, 276-283. [CrossRef] [PubMed] [Google Scholar]
  • Rochais, F., Vandecasteele, G., Lefebvre, F., Lugnier, C., Lum, H., Mazet, J.L., Cooper, D.M., and Fischmeister, R. (2004). Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes : an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem, 279, 52095-52105. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Hurtado, G., Morel, E., Dominguez-Rodriguez, A., Llach, A., Lezoualc’h, F., Benitah, J.P., and Gomez, A.M. (2012). Epac in cardiac calcium signaling. J Mol Cell Cardiol, 58, 162-171. [CrossRef] [PubMed] [Google Scholar]
  • Rybalkin, S.D., Rybalkina, I.G., Shimizu-Albergine, M., Tang, X.B., and Beavo, J.A. (2003). PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J, 22, 469-478. [CrossRef] [PubMed] [Google Scholar]
  • Sanada, S., Kitakaze, M., Papst, P.J., Asanuma, H., Node, K., Takashima, S., Asakura, M., Ogita, H., Liao, Y., Sakata, Y., Ogai, A., Fukushima, T., Yamada, J., Shinozaki, Y., Kuzuya, T., Mori, H., Terada, N., and Hori, M. (2001). Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors : the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation, 104, 705-710. [CrossRef] [PubMed] [Google Scholar]
  • Schindler, R.F. and Brand, T. (2016). The Popeye domain containing protein family - A novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol, 120, 28-36. [CrossRef] [PubMed] [Google Scholar]
  • Schultz, J.E., Dunkern, T., Gawlitta-Gorka, E., and Sorg, G. (2011). The GAF-tandem domain of phosphodiesterase 5 as a potential drug target. Handb Exp Pharmacol, 151-166. [Google Scholar]
  • Sette, C. and Conti, M. (1996). Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem, 271, 16526-16534. [CrossRef] [PubMed] [Google Scholar]
  • Shakur, Y., Fong, M., Hensley, J., Cone, J., Movsesian, M.A., Kambayashi, J., Yoshitake, M., and Liu, Y. (2002). Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity, intracellular cAMP and calcium in the heart. Cardiovasc Drugs Ther, 16, 417-427. [CrossRef] [PubMed] [Google Scholar]
  • Sin, Y.Y., Edwards, H.V., Li, X., Day, J.P., Christian, F., Dunlop, A. J., Adams, D.R., Zaccolo, M., Houslay, M.D., and Baillie, G.S. (2011). Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol, 50, 872-883. [CrossRef] [PubMed] [Google Scholar]
  • Sprenger, J.U., Perera, R.K., Steinbrecher, J.H., Lehnart, S.E., Maier, L.S., Hasenfuss, G., and Nikolaev, V.O. (2015). In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun, 6, 6965. [CrossRef] [PubMed] [Google Scholar]
  • Steinberg, S.F. and Brunton, L.L. (2001). Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol, 41, 751-773. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Sun, B., Li, H., Shakur, Y., Hensley, J., Hockman, S., Kambayashi, J., Manganiello, V.C., and Liu, Y. (2007). Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal, 19, 1765-1771. [CrossRef] [PubMed] [Google Scholar]
  • Takimoto, E., Belardi, D., Tocchetti, C.G., Vahebi, S., Cormaci, G., Ketner, E.A., Moens, A.L., Champion, H.C., and Kass, D.A. (2007). Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation, 115, 2159-2167. [CrossRef] [PubMed] [Google Scholar]
  • Takimoto, E., Champion, H.C., Li, M., Belardi, D., Ren, S., Rodriguez, E. R., Bedja, D., Gabrielson, K.L., Wang, Y., and Kass, D.A. (2005). Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med, 11, 214-222. [CrossRef] [PubMed] [Google Scholar]
  • Terrenoire, C., Houslay, M.D., Baillie, G.S., and Kass, R.S. (2009). The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem, 284, 9140-9146. [CrossRef] [PubMed] [Google Scholar]
  • Tosaka, S., Makita, T., Tosaka, R., Maekawa, T., Cho, S., Hara, T., Ureshino, H., and Sumikawa, K. (2007). Cardioprotection induced by olprinone, a phosphodiesterase III inhibitor, involves phosphatidylinositol-3-OH kinase-Akt and a mitochondrial permeability transition pore during early reperfusion. J Anesth, 21, 176-180. [CrossRef] [PubMed] [Google Scholar]
  • Tsai, E.J., and Kass, D.A. (2009). Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther, 122, 216-238. [CrossRef] [PubMed] [Google Scholar]
  • Vandeput, F., Wolda, S.L., Krall, J., Hambleton, R., Uher, L., McCaw, K. N., Radwanski, P.B., Florio, V., and Movsesian, M.A. (2007). Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem, 282, 32749-32757. [CrossRef] [PubMed] [Google Scholar]
  • Verde, I., Pahlke, G., Salanova, M., Zhang, G., Wang, S., Coletti, D., Onuffer, J., Jin, S.L., and Conti, M. (2001). Myomegalin is a novel protein of the Golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem, 276, 11189-11198. [CrossRef] [PubMed] [Google Scholar]
  • Wechsler, J., Choi, Y.H., Krall, J., Ahmad, F., Manganiello, V.C., and Movsesian, M.A. (2002). Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. J Biol Chem, 277, 38072-38078. [CrossRef] [PubMed] [Google Scholar]
  • Yan, C., Miller, C.L., and Abe, J. (2007). Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res, 100, 489-501. [CrossRef] [PubMed] [Google Scholar]
  • Yang, L., Liu, G., Zakharov, S.I., Bellinger, A.M., Mongillo, M., and Marx, S.O. (2007). Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res, 101, 465-474. [CrossRef] [PubMed] [Google Scholar]
  • Zhai, K., Hubert, F., Nicolas, V., Ji, G., Fischmeister, R., and Leblais, V. (2012). Beta-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells. PLoS One, 7, e47826. [CrossRef] [PubMed] [Google Scholar]
  • Zoccarato, A., Surdo, N.C., Aronsen, J.M., Fields, L.A., Mancuso, L., Dodoni, G., Stangherlin, A., Livie, C., Jiang, H., Sin, Y.Y., Gesellchen, F., Terrin, A., Baillie, G.S., Nicklin, S.A., Graham, D., Szabo-Fresnais, N., Krall, J., Vandeput, F., Movsesian, M., Furlan, L., Corsetti, V., Hamilton, G.M., Lefkimmiatis, K., Sjaastad, I., and Zaccolo, M. (2015). Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circ Res, 117, 707-719. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.