Accès gratuit
Biologie Aujourd'hui
Volume 210, Numéro 3, 2016
Page(s) 139 - 151
Section Les nucléotides cycliques : signalisation et rôles physiopathologiques Séance du 18 mai 2016
Publié en ligne 4 novembre 2016
  • Alsat, E., Mirlesse, V., Fondacci, C., Dodeur, M., and Evain-Brion, D. (1991). Parathyroid hormone increases epidermal growth factor receptors in cultured human trophoblastic cells from early and term placenta. J Clin Endocr Metab, 73, 288-294. [CrossRef] [Google Scholar]
  • Alsat, E., Guibourdenche, J., Luton, D., Frankenne, F., and Evain-Brion, D. (1997). Human placental growth hormone. Am J Obstet Gynecol, 177, 1526-1534. [PubMed] [Google Scholar]
  • Baillie, G.S., Scott, J.D., and Houslay, M.D. (2005). Compartmentalisation of phosphodiesterases and protein kinase A : opposites attract. FEBS Lett, 579, 3264-3270. [CrossRef] [PubMed] [Google Scholar]
  • Burgers, P.P., Ma, Y., Margarucci, L., Mackey, M., van der Heyden, M.A., Ellisman, M., Scholten, A., Taylor, S.S., and Heck, A.J. (2012). A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem, 287, 43789-43797. [CrossRef] [PubMed] [Google Scholar]
  • Cadd, G.G., Uhler, M.D., and McKnight, G.S. (1990). Holoenzymes of cAMP-dependent protein kinase containing the neural form of type I regulatory subunit have an increased sensitivity to cyclic nucleotides. J Biol Chem, 265, 19502-19506. [PubMed] [Google Scholar]
  • Carr, D.W., Stofko-Hahn, R.E., Fraser, I.D., Bishop, S.M., Acott, T.S., Brennan, R.G., and Scott, J.D. (1991). Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem, 266, 14188-14192. [PubMed] [Google Scholar]
  • Chang, C.W., Chang, G.D., and Chen, H. (2011). A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Mol Cell Biol, 31, 3820-3831. [CrossRef] [PubMed] [Google Scholar]
  • Chen, C.P., Chen, L.F., Yang, S.R., Chen, C.Y., Ko, C.C., Chang, G.D., and Chen, H. (2008). Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod, 79, 815-823. [PubMed] [Google Scholar]
  • Chen, H., and Cheong, M.L. (2011). Syncytins : Molecular aspects. In: Cell fusions : regulation and control, L.G. Larsson ed., Springer, Vol. 1, pp. 117-137. [Google Scholar]
  • Clegg, C.H., Cadd, G.G., and McKnight, G.S. (1988). Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA, 85, 3703-3707. [CrossRef] [Google Scholar]
  • Coghlan, V.M., Perrino, B.A., Howard, M., Langeberg, L.K., Hicks, J.B., Gallatin, W.M., and Scott, J.D. (1995). Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science, 267, 108-111. [CrossRef] [PubMed] [Google Scholar]
  • Colledge, M., and Scott, J.D. (1999). AKAPs : from structure to function. Trends Cell Biol, 9, 216-221. [CrossRef] [PubMed] [Google Scholar]
  • Conti, A., Fabbrini, F., D’Agostino, P., Negri, R., Greco, D., Genesio, R., D’Armiento, M., Olla, C., Paladini, D., Zannini, M., and Nitsch L. (2007). Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics, 8, 268. [Google Scholar]
  • Corbin, J.D., Soderling, T.R., and Park, C.R. (1973). Regulation of adenosine 3’,5’-monophosphate-dependent protein kinase. I. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem, 248, 1813-1821. [PubMed] [Google Scholar]
  • Corbin, J.D., Sugden, P.H., Lincoln, T.M., and Keely, S.L. (1977). Compartmentalization of adenosine 3’ :5’-monophosphate and adenosine 3’ :5’-monophosphate-dependent protein kinase in heart tissue. J Biol Chem, 252, 3854-3861. [PubMed] [Google Scholar]
  • Coutifaris, C., Kao, L.C., Sehdev, H.M., Chin, U., Babalola, G. O., Blaschuk, O.W., and Strauss, J.F., 3rd. (1991). E-cadherin expression during the differentiation of human trophoblasts. Development, 113, 767-777. [PubMed] [Google Scholar]
  • de Rooij, J., Zwartkruis, F.J., Verheijen, M.H., Cool, R.H., Nijman, S.M., Wittinghofer, A., and Bos, J.L. (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 396, 474-477. [CrossRef] [PubMed] [Google Scholar]
  • Delidaki, M., Gu, M., Hein, A., Vatish, M., and Grammatopoulos, D. K. (2011). Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol, 332, 213-220. [CrossRef] [PubMed] [Google Scholar]
  • Dell’Acqua, M.L., and Scott, J.D. (1997). Protein kinase A anchoring. J Biol Chem, 272, 12881-12884. [CrossRef] [PubMed] [Google Scholar]
  • Dimitrov, D.S., Broder, C.C., Berger, E.A., and Blumenthal, R. (1993). Calcium ions are required for cell fusion mediated by the CD4-human immunodeficiency virus type 1 envelope glycoprotein interaction. J Virol, 67, 1647-1652. [PubMed] [Google Scholar]
  • Diviani, D., and Scott, J.D. (2001). AKAP signaling complexes at the cytoskeleton. J Cell Sci, 114, 1431-1437. [PubMed] [Google Scholar]
  • Dodge, K., and Scott, J.D. (2000). AKAP79 and the evolution of the AKAP model. FEBS Lett, 476, 58-61. [CrossRef] [PubMed] [Google Scholar]
  • Dostmann, W.R., and Taylor, S.S. (1991). Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry, 30, 8710-8716. [PubMed] [Google Scholar]
  • Dunk, C.E., Gellhaus, A., Drewlo, S., Baczyk, D., Potgens, A.J., Winterhager, E., Kingdom, J.C., and Lye, S.J. (2012). The molecular role of connexin 43 in human trophoblast cell fusion. Biol Reprod, 86, 115. [PubMed] [Google Scholar]
  • Eaton, B., and Contractor, S. (1993). In vitro assessment of trophoblast receptors and placental transport mechanisms. In: The human placenta, C.W. Redman I.L. Sargent and P.M. Starkey, eds., London, Blackwell Scientific Publications, pp. 471-503. [Google Scholar]
  • Feliciello, A., Gottesman, M.E., and Avvedimento, E.V. (2001). The biological functions of A-kinase anchor proteins. J Mol Biol, 308, 99-114. [Google Scholar]
  • Ferré, F., Breuiller, M., and Cédard, L. (1975). Human placental cAMP phosphodiesterase activity kinetic properties and sensitivity to some drugs and hormones. FEBS Lett, 52, 295-299. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Fraser, I.D., Tavalin, S.J., Lester, L.B., Langeberg, L.K., Westphal, A.M., Dean, R.A., Marrion, N.V., and Scott, J.D. (1998). A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J, 17, 2261-2272. [PubMed] [Google Scholar]
  • Frendo, J.L., Cronier, L., Bertin, G., Guibourdenche, J., Vidaud, M., Evain-Brion, D., and Malassine, A. (2003). Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci, 116, 3413-3421. [CrossRef] [PubMed] [Google Scholar]
  • Gamm, D.M., Baude, E.J., and Uhler, M.D. (1996). The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo. J Biol Chem, 271, 15736-15742. [CrossRef] [PubMed] [Google Scholar]
  • Gerbaud, P., and Pidoux, G. (2015). Review : An overview of molecular events occurring in human trophoblast fusion. Placenta, 36 Suppl 1, S35-42. [CrossRef] [PubMed] [Google Scholar]
  • Gerbaud, P., Taskén, K., and Pidoux, G. (2015). Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol 6, 202. [Google Scholar]
  • Getsios, S., and MacCalman, C.D. (2003). Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro. Dev Biol, 257, 41-54. [CrossRef] [PubMed] [Google Scholar]
  • Handwerger, S. (1991). The physiology of placental lactogen in human pregnancy. Endocrinology, 12, 329-336. [Google Scholar]
  • Huang, L.J., Durick, K., Weiner, J.A., Chun, J., and Taylor, S.S. (1997a). D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc Natl Acad Sci USA, 94, 11184-11189. [CrossRef] [Google Scholar]
  • Huang, L.J., Durick, K., Weiner, J.A., Chun, J., and Taylor, S.S. (1997b). Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem, 272, 8057-8064. [CrossRef] [PubMed] [Google Scholar]
  • Huppertz, B., and Kingdom, J.C. (2004). Apoptosis in the trophoblast–role of apoptosis in placental morphogenesis. J Soc Gynecol Investig, 11, 353-362. [CrossRef] [PubMed] [Google Scholar]
  • Jahnsen, T., Hedin, L., Lohmann, S.M., Walter, U., and Richards, J. S. (1986). The neural type II regulatory subunit of cAMP-dependent protein kinase is present and regulated by hormones in the rat ovary. J Biol Chem, 261, 6637-6639. [PubMed] [Google Scholar]
  • Jameson, J., and Hollenberg, A. (1993). Regulation of chorionic gonadotropin gene expression. Endocr Rev, 14, 203-221. [PubMed] [Google Scholar]
  • Kawasaki, H., Springett, G.M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., Housman, D.E., and Graybiel, A.M. (1998). A family of cAMP-binding proteins that directly activate Rap1. Science, 282, 2275-2279. [CrossRef] [PubMed] [Google Scholar]
  • Keryer, G., Alsat, E., Taskén, K., and Evain-Brion, D. (1998a). Role of cyclic AMP-dependant protein kinases in human villous cytotrophoblast differentiation. Placenta, 19 Suppl 2, S295-314. [Google Scholar]
  • Keryer, G., Alsat, E., Taskén, K., and Evain-Brion, D. (1998b). Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci, 111, 995-1004. [Google Scholar]
  • Klarenbeek, J.B., Goedhart, J., Hink, M.A., Gadella, T.W., and Jalink, K. (2011). A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One, 6, e19170. [CrossRef] [PubMed] [Google Scholar]
  • Kliman, H., Nestler, J., Sermasi, E., Sanger, J., and StraussIII, J. (1986). Purification, characterization and in vitro differenciation of cytotrophoblasts from human term placentae. Endocrinology, 118, 1567-1582. [PubMed] [Google Scholar]
  • Knerr, I., Schubert, S.W., Wich, C., Amann, K., Aigner, T., Vogler, T., Jung, R., Dotsch, J., Rascher, W., and Hashemolhosseini, S. (2005). Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett, 579, 3991-3998. [CrossRef] [PubMed] [Google Scholar]
  • Lee, D.C., Carmichael, D.F., Krebs, E.G., and McKnight, G.S. (1983). Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci USA, 80, 3608-3612. [CrossRef] [Google Scholar]
  • Li, H., Degenhardt, B., Tobin, D., Yao, Z.X., Taskén, K., and Papadopoulos, V. (2001). Identification, localization, and function in steroidogenesis of PAP7 : a peripheral-type benzodiazepine receptor- and PKA (RIalpha)-associated protein. Mol Endocrinol, 15, 2211-2228. [PubMed] [Google Scholar]
  • Lin, J.W., Wyszynski, M., Madhavan, R., Sealock, R., Kim, J.U., and Sheng, M. (1998). Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci, 18, 2017-2027. [PubMed] [Google Scholar]
  • Liu, J., Matyakhina, L., Han, Z., Sandrini, F., Bei, T., Stratakis, C.A., and Papadopoulos, V. (2003). Molecular cloning, chromosomal localization of human peripheral-type benzodiazepine receptor and PKA regulatory subunit type 1A (PRKAR1A)-associated protein PAP7, and studies in PRKAR1A mutant cells and tissues. FASEB J, 17, 1189-1191. [PubMed] [Google Scholar]
  • Lu, X., and Kang, Y. (2009). Cell fusion as a hidden force in tumor progression. Cancer Res 69, 8536-8539. [Google Scholar]
  • Lugnier, C. (2006). Cyclic nucleotide phosphodiesterase (PDE) superfamily : a new target for the development of specific therapeutic agents. Pharmacol Ther, 109, 366-398. [CrossRef] [PubMed] [Google Scholar]
  • Lygren, B., Carlson, C.R., Santamaria, K., Lissandron, V., McSorley, T., Litzenberg, J., Lorenz, D., Wiesner, B., Rosenthal, W., Zaccolo, M., Taskén K, and Klussmann, E., (2007). AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep, 8, 1061-1067. [CrossRef] [PubMed] [Google Scholar]
  • Means, C.K., Lygren, B., Langeberg, L.K., Jain, A., Dixon, R.E., Vega, A.L., Gold, M.G., Petrosyan, S., Taylor, S.S., Murphy, A.N. Ha T, Santana LF, Taskén K, and Scott JD. (2011). An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc Natl Acad Sci USA, 108, E1227-1235. [Google Scholar]
  • Meuris, S., Polliotti, B., Robyn, C., and Lebrun, P. (1994). Ca2+ entry through L-Type voltage semsitive Ca2+ channels stimulates the release of human chorionic gonadotrophin and placental lactogen by placental explants. Biochim Biophys Acta, 1220, 101-106. [PubMed] [Google Scholar]
  • Midgley, A., Pierce, G., Denau, G., and Gosling, J. (1963). Morphogenesis of syncytiotrophoblast in vivo : an autoradiographic demonstration. Science, 141, 350-351. [CrossRef] [PubMed] [Google Scholar]
  • Ogren, L., and Talamentes, F. (1994). The placenta as an endocrine organ : polypeptides. In: Physiology of reproduction, E. Knobil and J. Neill, eds., Raven Press, New-York, pp. 875-945. [Google Scholar]
  • Oren-Suissa, M., and Podbilewicz, B. (2007). Cell fusion during development. Trends Cell Biol, 17, 537-546. [CrossRef] [PubMed] [Google Scholar]
  • Pérot, P., Montgiraud, C., Lavillette, D., and Mallet, F. (2011). A comparative portrait of retroviral fusogens and syncytins. In Cell fusions : regulation and control, L.I. Larsson, ed., Springer, Vol. 1, pp. 63-115. [Google Scholar]
  • Pidoux, G., and Taskén, K. (2010). Specificity and spatial dynamics of PKA signaling organized by A kinase anchoring proteins. J Mol Endocrinol, 44, 271-284. [CrossRef] [PubMed] [Google Scholar]
  • Pidoux, G., and Taskén, K. (2015). Anchored PKA as a gatekeeper for gap junctions. Commun Integr Biol, 8, e1057361. [CrossRef] [PubMed] [Google Scholar]
  • Pidoux, G., Gerbaud, P., Marpeau, O., Guibourdenche, J., Ferreira, F., Badet, J., Evain-Brion, D., and Frendo, J.L., (2007a). Human placental development is impaired by abnormal human chorionic gonadotropin signaling in trisomy 21 pregnancies. Endocrinology 148, 5403-5413. [PubMed] [Google Scholar]
  • Pidoux, G., Gerbaud, P., Tsatsaris, V., Marpeau, O., Ferreira, F., Meduri, G., Guibourdenche, J., Badet, J., Evain-Brion, D., and Frendo, J.L. (2007b). Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. J Cell Physiol, 212, 26-35. [CrossRef] [PubMed] [Google Scholar]
  • Pidoux, G., Gerbaud, P., Gnidehou, S., Grynberg, M., Geneau, G., Guibourdenche, J., Carette, D., Cronier, L., Evain-Brion, D., Malassine, A. and Frendo J.L. (2010). ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol, 298, C1517-1526. [CrossRef] [Google Scholar]
  • Pidoux, G., Gerbaud, P., Dompierre, J., Lygren, B., Solstad, T., Evain-Brion, D., and Taskén, K. (2014). A PKA-ezrin-connexin 43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci, 127, 4172-4185. [CrossRef] [PubMed] [Google Scholar]
  • Potter, R.L., and Taylor, S.S. (1979). Relationships between structural domains and function in the regulatory subunit of cAMP-dependent protein kinases I and II from porcine skeletal muscle. J Biol Chem, 254, 2413-2418. [PubMed] [Google Scholar]
  • Rote, N.S. (2005). Intercellular fusion of BeWo. Placenta, 26, 686; author reply 687. [CrossRef] [PubMed] [Google Scholar]
  • Ruppelt, A., Oberprieler, N.G., Magklaras, G., and Taskén, K. (2009). Physiological substrates of PKA and PKG. In: Part II : Transmission : effectors and cytosolic events, vol. 1 (ed. H. o. c. s. 2/E), Academic Press, La Jolla, pp. 1497-1514. [Google Scholar]
  • Schillace, R.V., and Scott, J.D. (1999). Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol, 9, 321-324. [CrossRef] [PubMed] [Google Scholar]
  • Scott, J.D. (1991). Cyclic nucleotide-dependent protein kinases. Pharmacol Ther, 50, 123-145. [CrossRef] [PubMed] [Google Scholar]
  • Scott, J.D., and Pawson, T. (2009). Cell signaling in space and time : where proteins come together and when they’re apart. Science, 326, 1220-1224. [CrossRef] [PubMed] [Google Scholar]
  • Scott, J.D., Glaccum, M.B., Zoller, M.J., Uhler, M.D., Helfman, D.M., McKnight, G.S., and Krebs, E.G. (1987). The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc Natl Acad Sci USA, 84, 5192-5196. [CrossRef] [Google Scholar]
  • Scott, J.D., Stofko, R.E., McDonald, J.R., Comer, J.D., Vitalis, E.A., and Mangili, J.A. (1990). Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. J Biol Chem, 265, 21561-6. [PubMed] [Google Scholar]
  • Shabb, J.B. (2001). Physiological substrates of cAMP-dependent protein kinase. Chem Rev, 101, 2381-2411. [PubMed] [Google Scholar]
  • Shi, C., and Zhuang, L. (1993). Norepinephrine regulates human chorionic gonadotropin production by first trimester trophoblast tissue in vitro. Placenta, 14, 683-693. [CrossRef] [PubMed] [Google Scholar]
  • Shi, Q.J., Lei, Z.M., Rao, C.V., and Lin, J. (1993). Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology, 132, 1387-95. [PubMed] [Google Scholar]
  • Shi, Y. (2009). Serine/threonine phosphatases : mechanism through structure. Cell, 139, 468-484. [PubMed] [Google Scholar]
  • Taskén, K., and Aandahl, E.M. (2004). Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev, 84, 137-167. [CrossRef] [PubMed] [Google Scholar]
  • Taskén, K., Andersson, K.B., Skalhegg, B.S., Taskén, K.A., Hansson, V., Jahnsen, T., and Blomhoff, H.K. (1993a). Reciprocal regulation of mRNA and protein for subunits of cAMP-dependent protein kinase (RI alpha and C alpha) by cAMP in a neoplastic B cell line (Reh). J Biol Chem, 268, 23483-23489. [PubMed] [Google Scholar]
  • Taskén, K., Skalhegg, B.S., Solberg, R., Andersson, K.B., Taylor, S.S., Lea, T., Blomhoff, H.K., Jahnsen, T., and Hansson, V. (1993b). Novel isozymes of cAMP-dependent protein kinase exist in human cells due to formation of RI alpha-RI beta heterodimeric complexes. J Biol Chem, 268, 21276-21283. [PubMed] [Google Scholar]
  • Taskén, K.A., Collas, P., Kemmner, W.A., Witczak, O., Conti, M. and Taskén, K. (2001). Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem, 276, 21999-22002. [CrossRef] [PubMed] [Google Scholar]
  • Trotter, K.W., Fraser, I.D., Scott, G.K., Stutts, M.J., Scott, J.D., and Milgram, S.L. (1999). Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. J Cell Biol, 147, 1481-92. [CrossRef] [PubMed] [Google Scholar]
  • Ul Hussain, M. (2014). Transcriptional regulation of the connexin gene. In: Connexins : The gap junction proteins, M. Ul Hussain, ed., Springer, Vol. 1, pp. 17-23. [Google Scholar]
  • Wakelam, M. (1985). The fusion of myoblasts. Biochem J, 15, 1-12. [Google Scholar]
  • Weedon-Fekjær, M.S., and Taskén, K. (2011). Spatiotemporal dynamics of hCG/cAMP signaling and regulation of placental function. Placenta, 1-5. [Google Scholar]
  • Xiong, L.M., LeBon, T.R., and Fujita-Yamaguchi, Y. (1990). Characterization of human placental cytosolic adenosine 3’,5’-monophosphate phosphodiesterase by inhibitors and insulin treatment. Endocrinology, 126, 2102-2119. [PubMed] [Google Scholar]
  • Yoshie, M., Kaneyama, K., Kusama, K., Higuma, C., Nishi, H., Isaka, K., and Tamura, K. (2010). Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod, 25, 2229-2238. [PubMed] [Google Scholar]
  • Zaccolo, M., and Pozzan, T. (2002). Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science, 295, 1711-1715. [CrossRef] [PubMed] [Google Scholar]
  • Zambonin Zallone, A., Teti, A., and Primavera, M. (1984). Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci, 66, 335-342. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.