Accès gratuit
Numéro
Biologie Aujourd'hui
Volume 210, Numéro 3, 2016
Page(s) 153 - 166
Section Les nucléotides cycliques : signalisation et rôles physiopathologiques Séance du 18 mai 2016
DOI https://doi.org/10.1051/jbio/2016020
Publié en ligne 4 novembre 2016
  • Aikawa, M., Sivam, P.N., Kuro-o, M., Kimura, K., Nakahara, K., Takewaki, S., Ueda, M., Yamaguchi, H., Yazaki, Y. and Periasamy, M. (1993). Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res, 73, 1000-1012. [PubMed] [Google Scholar]
  • Ayling, L.J., Briddon, S.J., Halls, M.L., Hammond, G.R., Vaca, L., Pacheco, J., Hill, S.J. and Cooper, D.M. (2012). Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu. J Cell Sci, 125, 869-886. [CrossRef] [PubMed] [Google Scholar]
  • Bakalyar, H.A. and Reed, R.R. (1990). Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science, 250, 1403-1406. [CrossRef] [PubMed] [Google Scholar]
  • Bauman, A.L., Soughayer, J., Nguyen, B.T., Willoughby, D., Carnegie, G.K., Wong, W., Hoshi, N., Langeberg, L.K., Cooper, D.M., Dessauer, C.W. and Scott, J.D. (2006). Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes. Mol Cell, 23, 925-931. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bennett, M.R., Sinha, S. and Owens, G.K. (2016). Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res, 118, 692-702. [PubMed] [Google Scholar]
  • Bogard, A.S., Adris, P. and Ostrom, R.S. (2012). Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle. J Pharmacol Exp Ther, 342, 586-595. [CrossRef] [PubMed] [Google Scholar]
  • Calejo, A.I. and Taskén, K. (2015). Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol, 6, 192. [PubMed] [Google Scholar]
  • Cali, J.J., Zwaagstra, J.C., Mons, N., Cooper, D.M. and Krupinski, J. (1994). Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem, 269, 12190-12195. [PubMed] [Google Scholar]
  • Cali, J.J., Parekh, R.S. and Krupinski, J. (1996). Splice variants of type VIII adenylyl cyclase. Differences in glycosylation and regulation by Ca2+/calmodulin. J Biol Chem, 271, 1089-1095. [CrossRef] [PubMed] [Google Scholar]
  • Campbell, J.H. and Campbell, G.R. (1994). Cell biology of atherosclerosis. J Hypertens Suppl, 12, S129-S132. [PubMed] [Google Scholar]
  • Chester, J.A. and Watts, V.J. (2007). Adenylyl cyclase 5 : a new clue in the search for the “fountain of youth”. Sci STKE, 2007, pe64. [Google Scholar]
  • Choi, E.J., Xia, Z. and Storm, D.R. (1992). Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry, 31, 6492-6498. [PubMed] [Google Scholar]
  • Clément, N., Glorian, M., Raymondjean, M., Andréani, M. and Limon, I. (2006). PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation : a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J Cell Physiol, 208, 495-505. [CrossRef] [PubMed] [Google Scholar]
  • Cooper, D.M. (2003). Regulation and organization of adenylyl cyclases and cAMP. Biochem J, 375, 517-529. [CrossRef] [PubMed] [Google Scholar]
  • Cooper, D.M. and Tabbasum, V.G. (2014). Adenylate cyclase-centred microdomains. Biochem J, 462, 199-213. [CrossRef] [PubMed] [Google Scholar]
  • Crossthwaite, A.J., Ciruela, A., Rayner, T.F. and Cooper, D.M. (2006). A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol Pharmacol, 69, 608-617. [PubMed] [Google Scholar]
  • Diel, S., Klass, K., Wittig, B. and Kleuss, C. (2006). Gbetagamma activation site in adenylyl cyclase type II. Adenylyl cyclase type III is inhibited by Gbetagamma. J Biol Chem, 281, 288-294. [CrossRef] [PubMed] [Google Scholar]
  • Dou, H., Wang, C., Wu, X., Yao, L., Zhang, X., Teng, S., Xu, H., Liu, B., Wu, Q., Zhang, Q., Hu, M., Wang, Y., Wang, L., Wu, Y., Shang, S., Kang, X., Zheng, L., Zhang, J., Raoux, M., Lang, J., Li, Q., Su, J., Yu, X., Chen, L. and Zhou, Z. (2015). Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia, 58, 324-333. [PubMed] [Google Scholar]
  • Feldman, L.J., Mazighi, M., Scheuble, A., Deux, J.F., De Benedetti, E., Badier-Commander, C., Brambilla, E., Henin, D., Steg, P.G. and Jacob, M.P. (2001). Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation, 103, 3117-3122. [CrossRef] [PubMed] [Google Scholar]
  • Ferguson, G.D. and Storm, D.R. (2004). Why calcium-stimulated adenylyl cyclases. Physiology (Bethesda), 19, 271-276. [CrossRef] [PubMed] [Google Scholar]
  • Gao, B.N. and Gilman, A.G. (1991). Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA, 88, 10178-10182. [CrossRef] [Google Scholar]
  • Gong, B., Wang, H., Gu, S., Heximer, S.P. and Zhuo, M. (2007). Genetic evidence for the requirement of adenylyl cyclase 1 in synaptic scaling of forebrain cortical neurons. Eur J Neurosci, 26, 275-288. [CrossRef] [PubMed] [Google Scholar]
  • Gros, R., Ding, Q., Chorazyczewski, J., Pickering, J.G., Limbird, L.E. and Feldman, R.D. (2006). Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization. Circ Res, 99, 845-852. [PubMed] [Google Scholar]
  • Gu, C. and Cooper, D.M. (1999). Calmodulin-binding sites on adenylyl cyclase type VIII. J Biol Chem, 274, 8012-8021. [CrossRef] [PubMed] [Google Scholar]
  • Gueguen, M., Keuylian, Z., Mateo, V., Mougenot, N., Lompré, A. M., Michel, J.B., Meilhac, O., Lipskaia, L. and Limon, I. (2010). Implication of adenylyl cyclase 8 in pathological smooth muscle cell migration occurring in rat and human vascular remodelling. J Pathol, 221, 331-342. [PubMed] [Google Scholar]
  • Guillou, J.L., Nakata, H. and Cooper, D.M. (1999). Inhibition by calcium of mammalian adenylyl cyclases. J Biol Chem, 274, 35539-35545. [CrossRef] [PubMed] [Google Scholar]
  • Houslay, M.D., Baillie, G.S. and Maurice, D.H. (2007). cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system : a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res, 100, 950-966. [PubMed] [Google Scholar]
  • Ishikawa, Y., Katsushika, S., Chen, L., Halnon, N.J., Kawabe, J. and Homcy, C.J. (1992). Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J Biol Chem, 267, 13553-13557. [PubMed] [Google Scholar]
  • Kapiloff, M.S., Piggott, L.A., Sadana, R., Li, J., Heredia, L.A., Henson, E., Efendiev, R. and Dessauer, C.W. (2009). An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem, 284, 23540-23546. [CrossRef] [PubMed] [Google Scholar]
  • Katsushika, S., Chen, L., Kawabe, J., Nilakantan, R., Halnon, N.J., Homcy, C.J. and Ishikawa, Y. (1992). Cloning and characterization of a sixth adenylyl cyclase isoform : types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA, 89, 8774-8778. [CrossRef] [Google Scholar]
  • Keuylian, Z., de Baaij, J.H., Gueguen, M., Glorian, M., Rouxel, C., Merlet, E., Lipskaia, L., Blaise, R., Mateo, V. and Limon, I. (2012). The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem, 287, 24978-24989. [CrossRef] [PubMed] [Google Scholar]
  • Krupinski, J., Lehman, T.C., Frankenfield, C.D., Zwaagstra, J.C. and Watson, P.A. (1992). Molecular diversity in the adenylylcyclase family. Evidence for eight forms of the enzyme and cloning of type VI. J Biol Chem, 267, 24858-24862. [PubMed] [Google Scholar]
  • Kuro-o, M., Nagai, R., Nakahara, K., Katoh, H., Tsai, R.C., Tsuchimochi, H., Yazaki, Y., Ohkubo, A. and Takaku, F. (1991). cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis. J Biol Chem, 266, 3768-3773. [PubMed] [Google Scholar]
  • Lipskaia, L., Defer, N., Esposito, G., Hajar, I., Garel, M.C., Rockman, H.A. and Hanoune, J. (2000). Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res, 86, 795-801. [PubMed] [Google Scholar]
  • Mallat, Z., Ait-Oufella, H. and Tedgui, A. (2005). Regulatory T cell responses : potential role in the control of atherosclerosis. Curr Opin Lipidol, 16, 518-524. [CrossRef] [PubMed] [Google Scholar]
  • Mhaouty-Kodja, S., Bouet-Alard, R., Limon-Boulez, I., Maltier, J.P. and Legrand, C. (1997). Molecular diversity of adenylyl cyclases in human and rat myometrium. Correlation with global adenylyl cyclase activity during mid- and term pregnancy. J Biol Chem, 272, 31100-31106. [CrossRef] [PubMed] [Google Scholar]
  • Nelson, C.P., Rainbow, R.D., Brignell, J.L., Perry, M.D., Willets, J.M., Davies, N.W., Standen, N.B. and Challiss, R.A. (2011). Principal role of adenylyl cyclase 6 in K? channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovasc Res, 91, 694-702. [CrossRef] [PubMed] [Google Scholar]
  • Okumura, S., Takagi, G., Kawabe, J., Yang, G., Lee, M.C., Hong, C., Liu, J., Vatner, D.E., Sadoshima, J., Vatner, S.F. and Ishikawa, Y. (2003). Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA, 100, 9986-9990. [CrossRef] [Google Scholar]
  • Owens, G.K. (1995). Regulation of differentiation of vascular smooth muscle cells. Physiol Rev, 75, 487-517. [PubMed] [Google Scholar]
  • Owens, G.K., Kumar, M.S. and Wamhoff, B.R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84, 767-801. [PubMed] [Google Scholar]
  • Paterson, J.M., Smith, S.M., Harmar, A.J. and Antoni, F.A. (1995). Control of a novel adenylyl cyclase by calcineurin. Biochem Biophys Res Commun, 214, 1000-1008. [PubMed] [Google Scholar]
  • Pavan, B., Biondi, C. and Dalpiaz, A. (2009). Adenylyl cyclases as innovative therapeutic goals. Drug Discov Today, 14, 982-991. [CrossRef] [PubMed] [Google Scholar]
  • Pierre, S., Eschenhagen, T., Geisslinger, G. and Scholich, K. (2009). Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov, 8, 321-335. [PubMed] [Google Scholar]
  • Pinto, C., Papa, D., Hübner, M., Mou, T.C., Lushington, G.H. and Seifert, R. (2008). Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J Pharmacol Exp Ther, 325, 27-36. [CrossRef] [PubMed] [Google Scholar]
  • Roscioni, S.S., Maarsingh, H., Elzinga, C.R., Schuur, J., Menzen, M., Halayko, A.J., Meurs, H. and Schmidt, M. (2011). Epac as a novel effector of airway smooth muscle relaxation. J Cell Mol Med, 15, 1551-1563. [CrossRef] [PubMed] [Google Scholar]
  • Sartore, S., Scatena, M., Chiavegato, A., Faggin, E., Giuriato, L. and Pauletto, P. (1994). Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling. J Vasc Res, 31, 61-81. [PubMed] [Google Scholar]
  • Schwartz, S.M. (1997). Smooth muscle migration in vascular development and pathogenesis. Transpl Immunol, 5, 255-260. [CrossRef] [PubMed] [Google Scholar]
  • Scott, J.D., Dessauer, C.W. and Taskén, K. (2013). Creating order from chaos : cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol, 53, 187-210. [CrossRef] [PubMed] [Google Scholar]
  • Simpson, R.E., Ciruela, A. and Cooper, D.M. (2006). The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8. J Biol Chem, 281, 17379-17389. [CrossRef] [PubMed] [Google Scholar]
  • Stary, H.C., Blankenhorn, D.H., Chandler, A.B., Glagov, S., Insull, W., Richardson, M., Rosenfeld, M.E., Schaffer, S.A., Schwartz, C. J. and Wagner, W.D. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 85, 391-405. [CrossRef] [PubMed] [Google Scholar]
  • Steiner, D., Saya, D., Schallmach, E., Simonds, W.F. and Vogel, Z. (2006). Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits. Cell Signal, 18, 62-68. [CrossRef] [PubMed] [Google Scholar]
  • Strazzabosco, M., Fiorotto, R., Melero, S., Glaser, S., Francis, H., Spirli, C. and Alpini, G. (2009). Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology, 50, 244-252. [CrossRef] [PubMed] [Google Scholar]
  • Sugano, Y., Lai, N.C., Gao, M.H., Firth, A.L., Yuan, J.X., Lew, W.Y. and Hammond, H.K. (2011). Activated expression of cardiac adenylyl cyclase 6 reduces dilation and dysfunction of the pressure-overloaded heart. Biochem Biophys Res Commun, 405, 349-355. [PubMed] [Google Scholar]
  • Tang, W.J. and Gilman, A.G. (1991). Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science, 254, 1500-1503. [CrossRef] [PubMed] [Google Scholar]
  • Tang, W.J. and Gilman, A.G. (1995). Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science, 268, 1769-1772. [CrossRef] [PubMed] [Google Scholar]
  • Tang, W.J., Krupinski, J. and Gilman, A.G. (1991). Expression and characterization of calmodulin-activated (type I) adenylylcyclase. J Biol Chem, 266, 8595-8603. [PubMed] [Google Scholar]
  • Taussig, R., Iñiguez-Lluhi, J.A. and Gilman, A.G. (1993). Inhibition of adenylyl cyclase by Gi alpha. Science, 261, 218-221. [CrossRef] [PubMed] [Google Scholar]
  • Watson, E.L., Jacobson, K.L., Singh, J.C., Idzerda, R., Ott, S. M., DiJulio, D.H., Wong, S.T. and Storm, D.R. (2000). The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem, 275, 14691-14699. [CrossRef] [PubMed] [Google Scholar]
  • Wayman, G.A., Impey, S. and Storm, D.R. (1995). Ca2+ inhibition of type III adenylyl cyclase in vivo. J Biol Chem, 270, 21480-21486. [CrossRef] [PubMed] [Google Scholar]
  • Webb, J.G., Yates, P.W., Yang, Q., Mukhin, Y.V. and Lanier, S. M. (2001). Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 281, H1545-52. [PubMed] [Google Scholar]
  • Wei, J., Wayman, G. and Storm, D.R. (1996). Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem, 271, 24231-24235. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby, D. and Cooper, D.M. (2007). Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev, 87, 965-1010. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby, D., Masada, N., Wachten, S., Pagano, M., Halls, M.L., Everett, K.L., Ciruela, A. and Cooper, D.M. (2010). AKAP79/150 interacts with AC8 and regulates Ca2+-dependent cAMP synthesis in pancreatic and neuronal systems. J Biol Chem, 285, 20328-20342. [CrossRef] [PubMed] [Google Scholar]
  • Willoughby, D., Everett, K.L., Halls, M.L., Pacheco, J., Skroblin, P., Vaca, L., Klussmann, E. and Cooper, D.M. (2012a). Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal, 5, ra29. [Google Scholar]
  • Willoughby, D., Halls, M.L., Everett, K.L., Ciruela, A., Skroblin, P., Klussmann, E. and Cooper, D.M. (2012b). A key phosphorylation site in AC8 mediates regulation of Ca(2+)-dependent cAMP dynamics by an AC8-AKAP79-PKA signalling complex. J Cell Sci, 125, 5850-5859. [CrossRef] [PubMed] [Google Scholar]
  • Xu, D., Isaacs, C., Hall, I.P. and Emala, C.W. (2001). Human airway smooth muscle expresses 7 isoforms of adenylyl cyclase : a dominant role for isoform V. Am J Physiol Lung Cell Mol Physiol, 281, L832-L843. [PubMed] [Google Scholar]
  • Yokoyama, U., Minamisawa, S., Katayama, A., Tang, T., Suzuki, S., Iwatsubo, K., Iwasaki, S., Kurotani, R., Okumura, S., Sato, M., Yokota, S., Hammond, H.K. and Ishikawa, Y. (2010). Differential regulation of vascular tone and remodeling via stimulation of type 2 and type 6 adenylyl cyclases in the ductus arteriosus. Circ Res, 106, 1882-1892. [PubMed] [Google Scholar]
  • Yoneyama, M., Sugiyama, A., Satoh, Y., Takahara, A., Nakamura, Y. and Hashimoto, K. (2002). Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine. Circ J, 66, 1150-1154. [PubMed] [Google Scholar]
  • Yoshida, T. and Owens, G.K. (2005). Molecular determinants of vascular smooth muscle cell diversity. Circ Res, 96, 280-291. [PubMed] [Google Scholar]
  • Yoshimura, M. and Cooper, D.M. (1992). Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci USA, 89, 6716-6720. [CrossRef] [Google Scholar]
  • Yoshimura, M., Ikeda, H. and Tabakoff, B. (1996). mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol Pharmacol, 50, 43-51. [PubMed] [Google Scholar]
  • Zhang, J., Sato, M., Duzic, E., Kubalak, S.W., Lanier, S.M. and Webb, J.G. (1997). Adenylyl cyclase isoforms and vasopressin enhancement of agonist-stimulated cAMP in vascular smooth muscle cells. Am J Physiol, 273,! H971-H980. [PubMed] [Google Scholar]
  • Zieba, B.J., Artamonov, M.V., Jin, L., Momotani, K., Ho, R., Franke, A.S., Neppl, R.L., Stevenson, A.S., Khromov, A.S., Chrzanowska-Wodnicka, M. and Somlyo, A.V. (2011). The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem, 286, 16681-16692. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.